命題の例
http://www.chimaira.org/archive/MizarLightForHOLLight_miz.ps.pdf より、
:: The drinker's principle reserve x for object; ex x st P x implies for y holds P y proof per cases; suppose A0: ex x st not P x; consider a such that A1: not P a by A0; take a; assume A2: P a; A3: contradiction by A1,A2; thus A4: for y holds P y by A3; suppose A5: for x holds P x; consider a suah that A6: not contradiction; take a; thus A7: P a implies for y holds P y by A5; end;
ちなみにHOLだと、
let DRINKER = prove (`?x:A. P x ==> !y. P y`, ASM_CASES_TAC `?x:A. ~P x` THEN RULE_ASSUM_TAC (REWRITE_RULE[NOT_EXISTS_THM]) THENL [POP_ASSUM CHOOSE_TAC; ALL_TAC] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[]);;
キーワードを一部日本語に置換してみる。
:: The drinker's principle 予約 x for object; ∃x.(P x ⇒ (∀y. P y)) 証明 場合分け; 場合 A0: ∃x. not P x; consider a such that A1: not P a 根拠は A0; take a; assume A2: P a; A3: 矛盾 根拠は A1,A2; よって A4: ∀y. P y 根拠は A3; 場合 A5: ∀x. P x; consider a such that A6: なんでもいい; take a; よって A7: P a ⇒ ∀y. P y 根拠は A5; 終り;